Statistical results for system identification based on quantized observations
نویسندگان
چکیده
منابع مشابه
Statistical results for system identification based on quantized observations
System identification based on quantized observations requires either approximations of the quantization noise, leading to suboptimal algorithms, or dedicated algorithms taylored to the quantization noise properties. This contribution studies fundamental issues in estimation that relate directly to the core methods in system identification. As a first contribution, results from statistical quan...
متن کاملIdentification of Hammerstein Systems with Quantized Observations
This work is concerned with identification of Hammerstein systems whose outputs are measured by quantized sensors. The system consists of a memoryless nonlinearity that is polynomial and possibly noninvertible, followed by a linear subsystem. The parameters of linear and nonlinear parts are unknown but have known orders. Input design, identification algorithms, and their essential properties ar...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولAdvanced software tools for parametric identification based on quantized data
Parametric estimation of signals, based on quantized data, is often carried out by means of least squares (LS) or averaging techniques. Such an approach often leads to optimal performance, resulting in almost unbiased estimators when the quantization error can approximately be modeled as an additive white Gaussian noise, or when other additive white Gaussian noise sources are larger than the qu...
متن کاملBayesian kernel-based system identification with quantized output data
In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2009
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2009.09.014